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Abstract--The Butterworth form of correlation for holdup in two-phase gas-liquid flow is justified 
theoretically for certain conditions. In addition, a wide range of experimental data were used to show that 
holdup data may be broadly classified into three major groups based on the flow pattern, and different 
relationships were found to represent the data in each group. Thus for slug and plug flow, the holdup is 
given by the Armand type of equation; for stratified flow the holdup is given by the theoretical equations 
which are derived while annular flow data are satisfactorily represented by a semi-empirical correlation. 

INTRODUCTION 
Butterworth (1975) surveyed the literature on two-phase holdup and suggested by intuitive 
reasoning that a number of the more commonly used holdup prediction equations may be 
represented by the relation, 
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where R is the holdup, x the dryness fraction, p the density and/~ the absolute viscosity, and 
the subscripts L and G refer to the liquid phase and gas phase respectively. The factors A, p, q 
and r, were shown to assume varying numerical values depending on which particular model 
was under consideration. Thus [1] provided a link for the various suggested holdup relations 
which, in their original forms, not only appeared unrelated, but sometimes gave conflicting 
results. However, what was lacking was some theoretical basis for the form of equation given 
by [1], and some rational explanation as to why there existed such a wide variation in the 
numerical values of the factors A, p, q and r with the various models that have been proposed. 

Spedding &Chen (1979a, 1979b) in deriving holdup equations for the cases of ideal stratified 
and ideal annular horizontal flows, have shown that the form of [1] may in fact be analytically 
derived for certain situations. In these cases, it was found that the values of A, p, q and r 
varied with the ideal flow patterns considered, the flow regimes, namely laminar or turbulent, 
and also with the range of the holdup values. It is the purpose of this work to expand the 
development to cover a wider range of application. 

THEORETICAL DEVELOPMENT 

Ideal equih'brium stratified flow and annular flow are depicted schematically in figures 1 and 
2 respectively. For stratified flow, by taking a force balance in the liquid phase and in the gas 
phase separately, it is possible to write, 

- Al.[ dl ]u -1"w1.St.+1 $1=o [21 
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Figure 1. A schematic diagram of ideal stratified flow. 
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Figure 2. A schematic diagram of ideal annular flow. 

[dp] - ewo• + ~'~Si - 0) [3] 
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and for annular flow, 

de 
- A6 [ dl ]ar -  ¢~S~ = O [4] 
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where A is the flow area for the particular phase, [dp/di] the pressure gradient, r the shear 
stress, S the length in a cross section where shear forces are experienced. The subscript F 
refers to the frictional component, while G and L refer to the gas and liquid phases, i refers to 
the interface, and W refers to the wall. It is assumed that the pressure gradients in the liquid 
and the gas phases are equal 

[dd-~/]/ =[d/]o~ [6] 
in a similar manner to that suggested by Taital & Dukler (1976). The shear stresses may be 
evaluated as in the case of single phase flow, 

• -L = A pL ¢ 2  2 [71 

~'wo = fo  [8] 

, ,  = f ~ o  ( ¢o  - G)2 2 [91 

where I7 is the actual average velocity, and f the friction factor which may be expressed in the 
Blasius form for smooth pipes. 
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By combining [4] and [5], 

+'~$i =. rwLSL r+$i [12] 
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Since S+ = 7rD+ and SL = ~rD, and by using the form of the shear stresses in [7] and [9], then [12] 
reduces to 

[/+oG #~o, ] /++ =/,...o,.. #:J:> [131 

which may be written in the form, 

'R" = II 11':+ -~' '+'  
l+ toy 

[14] 

where, for a smooth pipe, C is a numerical constant, assuming the value of 16 or 0.046 
depending on whether the flow is laminar or turbulent, and m also assuming the values of 1 or 
0.2 correspondingly./) is the hydraulic diameter for the phase, being four times the actual flow 
area over the wetted perimeter. 

It may be assumed that I7 a ~ I7 l (Bergelin & Gazley 1949) and that for a smooth interface, 
f+ =ffifo. The above equations were solved by using numerical methods and curve fitting 
techniques along the lines of those employed by Spedding & Chen (1979b) to give a series of 
equations which depended on flow pattern and regime as well as the range of holdup values. 

However, in the case of annular flow the assumption of fl = fo is well-known to be 
inappropriate. The annular liquid film is supported by a rather complicated system of forces and 
the liquid surface is always covered with various types of waves (Butterworth 1972). Wallis 
(1970) has shown that for such cases the friction factor may be approximated by 

/+=0.005(1+75RD. [15] 

The use of [15] in evaluation [14] might perhaps give a better representation of the true situation 
in annular flow. 

RESULTS 
Strati~ed ]low 

With horizontal equilibrium stratified flow, for turbulent-turbulent and laminar-laminar 
gas-liquid flow, the form of [1] was expressed in terms of the volumetric flow rate, Q, instead of 
the dryness fraction, 

r, r ,-,,,.-, [161 

thus it became more amenable to subsequent interpretation. Therefore[16] will be used 
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throughout this work in place of  [ 1 ] but the arguments presented hold equally well for both forms of  
equation. 

For ideal stratified, turbulent-turbulent and laminar-laminar flows, the values for K, a, b 

and c, are given in table 1. 
For gas-liquid, turbulent-laminar flow, the result was 

= w ,  pL Q~ ~ D  °~-j [17] 

where ,, = ~p is the kinematic viscosity,  D the pipe diameter and WI and w, are constants 
whose  values are given in table 2. For gas-liquid, laminar-turbulent flow, the result was 

Qo 
pz. QL ~'8 v °'2 J 

where W2 and w2 are given in table 3. 

[181 

Table 1. Values of K, a, b and c in [16] for ideal stratified flow 

Flow Type 

Turbulent-Turbulent 

Turbulent-Turbulent 

Turbulent-Turbulent 

Turbulent-Turbulent 

Turbulent-Turbulent 

Turbulent-Turbulent 

Turbulent-Turbulent 

Laminar-Laminar 

Lamlnar-Laminar 

Laminar-Laminar 

~mge o~ R d ~  x a b e 

2.5 x 10 -6 to 3 x I0 "~ 1.02 0.69 0.31 0.08 

3 x 10 -4 to 2.1 x 10 -2 1.14 0.70 0.31 0.08 

2.1 x 10-2to 2.5 x 10 -! 1.31 0.72 0.32 0.08 

2.5 x 10 -l to 1.3 1.48 0.77 0.34 0.09 

1.3 to 8.0 1.48 0.83 0.37 0.09 

8.0 to 1.4 x I0 2 1.28 0.90 0.40 0.i0 

1.4 x 102to I0 s 1.09 0.93 0.41 0.i0 

10 -3 to 0.2 1.46 0.45 0"00 0.45 

0.2 to 3.0 1.95 0.50 0'00 0.50 

3.0 to I0 ~ 1.83 0.57 0-00 0.57 

Table 2. Values of W, and.,  in [17] for gas-liquid turbulent-laminar stratified flow 

Range of R~R L 

0 . 1  - 0 . 7  

0 . 7  - 3 . 5  

3 . 5  - 2 0 . 0  

2 0 . 0  - 2 0 0 . 0  

W 
1 1 

0.01383 2.25 

0.01516 2.00 

0.012O0 1.83 

0.00826 1.70 

Table 3. Values of W2 and ~ in [18] for gas-liquid laminar-turbuient stratified flow 

l ~ n g e  o f  R G / ~  W 2 W 2 

0 . 0 4  - 0 . 0 2  538~,69  2 . 2 5  

0 . 2  - 6 . 0  1 : 3 0 . 4 4  2 . 1 5  

6 . 0  - 1 5 0 . 0  4 7 4 . 1 3  2 . 0 0  



AN ANALYSIS OF HOLDUP IN HORIZONTAL TWO-PHASE GAS-LIQUID FLOW | 51 

It should be noted that when the phases are in dissimilar flow regimes, i.e. laminar-turbulent 
or turbulent-laminar, the resultant equation is not of the same form as [1] or [16]. 

Ideal annular ~ow 
With ideal annular flow and taking f~ = fo, for turbulent-turbulent and laminar-laminar 

gas-liquid flow, the form of [16] was obtained also, but with the values of K, a, b and c, as 
given in table 4. 

The solution in this case proved to be exact, consequently there was no need to resort to the 
use of numerical methods and curve fitting techniques since the range of RG/RL was unlimited. 
The solutions for annular gas-liquid, turbulent-laminar and laminar-turbulent flows do not yield 
the same form of equation as [1] or [16] in a similar manner to that found for the case of 
stratified flow. Furthermore, unlike the case of stratified flow where the solutions are of 
practical importance, as will be discussed later, such solutions for ideal annular flow serve no 
practical purpose and were therefore not pursued. 

The factors given by Butterworth for [1] as well as the corresponding values for [16] for the 
various models are given in table 5 for easy reference. 

DISCUSSION AND COMPARISON WITH E X P E R I M E N T A L  DATA 

It is important to note that the analysis of idealised stratified and annular flows provides, 
under certain conditions, a holdup equation of the general form given by [I] or [16], and as such 
establishes a theoretical basis for this type of correlation. The analysis also shows that the 
factors appearing in [16] can be expected to vary depending, among other things, on the nature 
of the flow encountered in each phase, i.e. laminar or turbulent, the range of the value of 
RGIRL, and the flow pattern. Furthermore, the analysis also shows that the form of [1] or [16], is 
valid only when the gas and the liquid are flowing in the same regime of turbulent flow or 
laminar flow. 

Table 4. Values of K, a, b and c in [16] for ideal annular flow 

Plow type RG/RL K a b c 

Turbulent-Turbulent -- 1.0 0.9 0.4 0.1 

Laminar-Laminar -- 1.0 0.5 0-0 0.5 

Table 5. Values of A, p, q and r in [1] as given by Butterworth and the values of K, a, b and c in [16] for the 
various models considered 

Model A p 

Homogeneous Model 1 1 

Z i v l  (1964) 1 1 

T u r n e r - W a l l i s  (1965) 1 0.72 

Lockhart-MartL~elll 
(1949J 0.28 0.64 

~ o m  (1962) 1 1 

Baroczy (1965) 1 0.74 

Har r ison*  (1975) 1 0.80 

q E 

1 0 

0.67 0 

0.40 0.08 

0.36 0.07 

0 , 8 9  0.18 

0.65 0.13 

0.515 0 

K a 

1 1 

1 1 

1 0.72 

3.57 0.84 

1 1 

1 0.74 

1 0.80 

0 

0.33 

0.32 

0.28 

0.11 

0.09 

0. 285 

0 

0 

0.08 

0.07 

0.18 

0.13 

*Harrison (1975) obtained these values using data obtained from a 20cm diameter gcotlgrmal steam-water 
pipe line. 
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No one set of factors given by the analytical solutions in tables 1 and 4 agree exactly with 
any of the models or correlations considered by Butterworth and shown in table 5. However, a 
number are sufficiently close to warrant some comment. The Harrison (1975) correlation shows 
reasonable agreement with the analytical expression developed for annular flow. This is not 
unexpected because, in fact, the results of steam-water annular flow of the type used by 
Harrison should approach the idealised turbulent annular flow case since the variation of liquid 
film occurring in large diameter pipes at high gas flows is small compared with the pipe size. 
What little variation which is observed between the two can be attributed to the inevitable 
presence of surface disturbances on the film, the entrained liquid droplets and the variation in 
film thickness in the real situation which might cause a skewing effect in the velocity profiles. In 
fact, in analysing the Lockhart-Martinelli relationship for pressure drop, Chen & Spedding 
(1981) found that data from the gas-oil, air-water and steam-water systems for large diameter 
pipes approached the solutions derived for ideal annular flow. The Baroczy (1965) correlation, 
while not being as close as the Harrison correlation, does show a similarity to the analytical 
expression for annular turbulent-turbulent flow. The Turner & Wallis (1965) model exhibits fair 
agreement with the analytical solution for turbulent-turbulent stratified flow for the condition 
RolRL < 1.0. It is of interest to point out that while Turner & Wallis started off with a separate 
cylinder model, and subsequently incorporating empirical correction factors in their equation, 
they indicated that the range of applicability of the model was in the range of RolRL > 1.0. A 
convenient form of equation to use for representing experimental data is that of [19] 

[~-~L]---/X[Q~-L°]a [19] 

which is a special form of [16] when the system conditions remain constant, i.e. when 
H = K(po/pL)b(p.ol~L) c. A wide range of experimental horizontal flow holdup data are accord- 
ingly plotted as RolRL vs QOIQL in figures 3, 4, 5, 6 and 7. 

All the available stratified flow data were found to exhibit scatter in such a type of plot since 
the factors K, a, b, and c depend not only on the value of RoIRL, but also on whether the 
gas-liquid were in the laminar-laminar, laminar-turbulent, turbulent-laminar or turbulent- 
turbulent flow regimes. Thus it was found to be unprofitable to attempt to include stratified flow 
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Figure 3. Figure 4. 

Figure 3. Horizontal pipe annular flow data of Chen& Speddiug (1979) compared with the transformed 
Lockhart-Martinclli correlation and 119]. 

Figure 4. Horizontal pipe, slug, plug and annular flow data of Belms (1972) compared with the transformed 
Armed and Lockhart-Martinelli correlations. Note that strawed data are excluded from the graph in order to 

simplify the presentation. 
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Figure 5. Horizontal pipe, slug, plug and annular flow data of Govier & Omer (1962) compared with the 
transformed Armand and Lockharl-Martinelli correlations. 

lIP! I" a t . . ,  o,i=,a,t  ~.i,,,,, / __- 
1 ~ I o - l l , . p  I / / 

+ &J' 

.,,11 I~, Qt / ..t. 4~," ~'Trlnl|lrIllld 
IO 1 -~' ='~" .-"~ + . ~ "  LIcIIrI MertillIli 

1 I ( L ~ a ~ a d t ~  Lira ,.r 2O'C 1Mba 

I001 . . / ~  , Trlnll imid trlniIIII Li me. 

I ~ ' I ~ -  . . . .  ~ . . . . . . . . . . . . . . . . . . .  + . . . . . .  

10 "I 10 0 101 10 z Q.~ 10) 10 t 10 + 
OL 

Figure 6. Horizontal pipe slug and annular flow data of Chisholm & Laird (1958) compared with the 
transformed Armand and Lockhart-Martinelli correlations. 
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Figure 7. Horizontal pipe geothermal stream-water annular flow data of Harrison (1975) for a 20 cm din. pipe, 
compared with various correlations and theory. 
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holdup data on this general type of plot and such data were analysed in terms of [16], [17] and 
[18]. Figure 8 shows the value of RL plotted as predicted versus measured for the case of 
laminar liquid and turbulent gas flows. The agreement is good. The predictions of [16], (17] and 
[18] were further compared to the predictions of Taitel & Dukler (1976) who used a similar 
approach but had their solutions expressed in terms of the Lockhart-Martinelli R-X 
parameters. Figure 9 shows the comparison, also for the case of laminar liquid and turbulent 
gas flow, and the agreement is very good. A more detailed comparison is given in Spedding & 
Chen (1979b). Equations [16], [17] and [18] have also been applied successfully to the 
determination of flow pattern transitions by Spedding &Chen (1981) to describe the stratified- 
annular, the stratified-slug and the annular-slug transitions. 

All the data for the slug and plug flow pattern fall about a curved line in the range of 
(RolRL) < 4.0, as evidenced in figures 4, 5 and 6. It was found that this curved line may be 
obtained by expressing the empirical equation of Armand (1946), Ro = 0.83 [QoI(Qo + QL)], in 
terms of (P~ol/~) and (Qo/QL), thus, 

, (2o  
[0.2 + 1.2/(QolQL)] 

In terms of dryness fraction, Armand's equation is 

[~-~o]--l'2[l-x][P°]+0"2"- x JcpL.~ [21] 

Comparing [21] with [l], and referring to table 5, leads to the conclusion that the equation of 
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Figure 8. Measured liquid holdup against that predicted by [17] for liquid viscous-gas turbulent stratified flow. 
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Figure 9. Comparison of the prediction using [17] and the ~L -- X lines of Taitel & Dukler (1976) for liquid 
viscous-gas turbulent stratified flow together with data of Chen& Spedding (1979). 

Armand also is a special form of Butterworth's equation [1], but with an additional term of 0.2 
added. 

Nguyen & Spedding (1977) developed a holdup equation which can be reduced to the more 
simple Zuber & Findlay (1965) form under certain circumstances 

]?so_ = Co I77 + B' [22] 
RG 

where ~?sG is the superficial gas velocity based on the total cross-sectional area of the pipe and 
~?T is the total superficial velocity of gas and liquid, Co is the distribution parameter which 
accounts for non-uniformity of flow, while B' is the initial function and is related to the mean 
velocity difference between the phases. Rearrangement gives 

. ,  
Rz. = Co + ( C o - l ) + ~ , o  [231 

which again is a modified form of [1] to which two terms have been added. Taking Co - 1.2 as a 
rough approximation, as suggested by Zuber & Findlay (1965), it is obvious that [231 and [211 

t -- are basically the same except for the term B / Vso. They are both, in fact, modified forms of the 
homogeneous model and hence of [1] but with the important difference that they do not apply 
to the idealised annular or stratified flow regimes, above RoIRL = 4.0, since the mixture region 
is non-existent, but must be combined with another correlation of the form of [19] ff generality 
is to be obtained. 

A further model which may be cast in the Butterworth form, is the equal velocity head 
model due to Smith (1971). However the analysis, while being claimed to be quite general, leads 
to a complex result in which the indices vary progressively between wide limits set by the 
cases for ideal annular flow and ideal homogeneous misty flow. 
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In figure 3 the data of Chen & Spedding (179) for annular flow are shown to obey [19]. Also 
included in the plot is the transformed Lockhart-Martinelli line as given by Butterworth with 
the appropriate constants given in table 5 for 20°C and 1.0 atm pressure. As expected for the 
case of small diameter pipes, the Lockhart-Martinelli holdup correlation over-predicts/~L. The 
ideal annular flow equations with factors given in table 4, however, deviate significantly from 
the data, which are adequately represented if K = 0.45 and a = 0.65 in [19]. For these conditions 
this is the form of correlation which, applying above Ro/RL = 4.0, allows generality to be 
achieved. 

In figure 4 the slug and plug, and annular flow data of Beggs (1972) are plotted. Also 
included is the transformed Armand equation[20], and the Lockhart-Martinelli equation for 
20°C, 1 atm; 25°C, 4.1 atm, 25°C, 5.8 atm. It is obvious that the slug and plug flow data obey the 
Armand equation while the Lockhart-Martinelli equation generally overpredicts /~L. The slug, 
plug and annular flow of Govier & Omer (1962), shown in figure (5), generally agree with the 
Armand equation also, while the Lockhart-Martinelli equation for 20°C and 2.4 atm is shown to 
underpredict RL. The slug and annular flow data of Chisholm & Laird (1958) are given in figure 
6, together with Armand's line and the Lockhart-Martinelli equation for 20°C and 1.6 atm. 
Again the slug and plug flow data obey the Armand equation, with the annular flow data 
showing deviations which are consistent with those observed in figure 4. 

Data of Harrison (1975) for geothermal steam-water flow is plotted in figure 7 together with 
the transformed Lockhart-Martinelli line, the turbulent-turbulent annular flow line and the 
correlation suggested by Harrison for the steam-water condition at 8.2 atm. The data points are 
enveloped by the Lockhart-Martinelli line and the ideal annular flow line. The fact that they fall 
about the same line which represents the annular air-water flow data of Chen & Spedding 
(1979) may be coincidental since the two different systems also are completely different in 
terms of pipe diameter, pressure and temperature. 

It is observed that in the system variables covered by the various sets of data considered, 
slug and plug flow data obey the Armand equation satisfactorily independent of system 
conditions. However, the Armand equation has been reported to vary at conditions vastly 
different from those of the atmospheric air-water system as outlined by Chisholm (1973), 
and Bankoff (1960), among others. Thus the effects of viscosity, mass velocity, etc. will require 
to be determined if such variation was envisaged. 

For annular flow, the transformed Lockhart-Martinelli equation overpredicts RL for small 
diameter pipes but underpredicts for larger pipes; a circumstance which is possibly linked to the 
fact that the data used for small diameter pipes were those for the air-water system, and data 
used for larger diameter pipes were those for steam-water. Nevertheless, it appears that the 
experimental data and the prediction by the transformed Lockhart-Martineili equation are 
generally consistent since they both vary directly with the parameter (Qo/QL) °. Thus, it is 
suggested that [19] is a convenient form of equation for data presentation for annular flow in 
the case of fixed system conditions. While the value of H, as shown by comparing [19] to [16], 
appeared to be a function only of (PO/PL) and (~OII~L), it is suggested that a further variable, 
namely the pipe size, must also be incorporated into the correlation. The effect of mass velocity 
on the void fraction in annular flow has been detailed by Zuber & Findlay (1965). 

Chen & Spedding (1981) have extennded the Lockhart-Martinelli theory to enable pressure 
drop and holdup to be calculated for separated flow. The derived relationships for holdup are 
quite satisfactory for the case of stratified flow but exhibit a large deviation for annular flow 
data. Such a deviation between experimental and theory also has been noted in this work. The 
reasons for the disagreement were suggested as being due to variation of film thickness around 
the pipe, the skewing of the velocity profile, entrained drops and the effect of interracial 
disturbances. Since the effect appears to be magnified in small diameter pipes it is possible that 
the first two possible mechanisms only are involved under such geometrical circumstances. 
when ideality is more closely approached in large diameter pipes the film thickness and 
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velocity profile effects tend to become of minor importance. But, as has been already pointed 
out, that reasonable agreement between theory and experiment is achieved even in 20 cm 
diameter pipes used by Harrison (1975) for the steam-water system. The most realistic 
explanation of the lack of agreement appears to lie with the interfacial phenomena involved in 
the practical situation. In the theoretical development already presented it was assumed that the 
interface was smooth and hence fi -- fc~ Such an assumption is closer to the real situation in the 
case of stratified flow and hence the reasonable agreement with experimental result as reported 
in Spedding &Chen (1979). However, in the case of annular flow large deviations occur 
because fi~f~ due to the presence of ripples and roll waves (Wallis 1970). While fL may be 
approximated using the liquid film Reynolds number and the Blasius form of equation, the 
evaluation of f~ is more dilficult, and the correlation of Wallis (1970) as given in [15] is 
substituted into [14] to give 

1 
• 

1 +  L fL(l_~L)tla J LpLJ LQLJ 

The annular flow holdup data of Chen& Spedding (1979), Govier & Omer (1962) and 
Chisholm & Laird (1958) were used to check the validity of [24] in figure 10 in which the/~L 
values are plotted as predicted against actual. Reasonable agreement is achieved despite the 
fact that the values of/~L in annular flow are small, i.e./~L < 0.2, so that any error in such a 
log-log correlation will be greatly amplified. Thus [24] is suggested as an accurate correlation 
for the determination of liquid holdup in annular horizontal two-phase flow. 

In order to obtain/~L form [24], an iterative process must be used. Even so, the process is 
quite simple and speedy because the equation converges very rapidly. However, the calculation 
may be performed more conveniently by the use of computer techniques. 

It is also of interest to consider the slip ratio S which is defined as the ratio of the true 
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Figure 10. Predicted RL using [24] against measured RL for horizontal annular flow from various sources. 
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velocities. Expressing in terms of the Q and R values 

s =  [25] 
RG QL 

Equation [25] gives, for Harrison's goethermal steam-water data of Qc,/QL -- 10 to 200, a value 
of S = 5 to 14. 

An equation given by Chisholm (1973) gives 

L 

I/2 

[26] 

which, for the geothermal steam-water system of Harrison with PdPL = 0.003, gives values of 
S = 3-12. This is in agreement with the results presented in this work. 

For the air-water system, the value of S ranges between 1.0 and 50. Using [26] and with 
PdPL = 0.0013, the values of S is 1-27, showing that [26] under-predicts S in the high flow rate 
air-water system. However, [26] is strictly only applicable to Qo/(QL + Qo) < 0.9, and that the 
flow must not be stratified. It was observed that at the upper range of Qo/Qt (Chen& Spedding 
1979) the annular film breaks down to result in a stratified flow with only a trickle of liquid 
running along the bottom of the pipe, and thus there is insufficient liquid to wet the entire pipe 
perimeter. 

CONCLUSIONS 

An analytical solution of idealised models has given some theoretical justification to the 
Butterworth form of holdup correlation, as given by [l] or [16], when the two phases are 
flowing in the same flow regime, i.e. both laminar or both turbulent. It was found that the 
factors A, p, q and r in the case of [l], or K, a, b and c in the case of [16], varied depending on 
the values of (RL/RG), the flow regime, and the flow pattern. However, when the gas-liquid 
were in dissimilar flow regimes, i.e. laminar-turbulent or turbulent-laminar, the holdup equation 
derived did not follow the form of [1] or [16]. 

As suggested by the form of [16] and [19] experimental data were plotted as (RJRL) against 
(QdQD from which it was found that holdup data may be broadly classified into three major 
groups based on the flow pattern; stratified, annular, and slugs and plugs. The method given by 
Spedding &Chen (1981), which makes use of the stratified holdup equations given here, is 
useful for determining these groupings. Stratified flow data are represented by the stratified flow 
equations derived in this work and which also are reported in Spedding &Chen (1979b). 
Annular flow data is best represented by [16] or its simplified form, [19], although some 
diameter and mass velocity effects are evident. Slug and plug flow data are described best by 
the Armand type of equation, or its transform as given by [20], for system whose properties are 
close to those of the atmospheric air-water system. By using an experimentally derived form 
for the interracial friction factor it is possible to derive a correlation for liquid holdup for 
annular flow which gives reasonable agreement with a wide range of data and thus appears to 
be more general in scope than [16] or [19]. 
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